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The attitude of the object to be picked up is determined using a histogram of the
orientations of visible surface patches. Surface orientation, in turn, is determined
using photometric stereo applied to multiple images. These images are taken with the
same camera but differing lighting. The resulting needle map, giving the orientations
of surface patches, is used to create an orientation histogram which is a discrete
approximation to the extended Gaussian image. This can be matched against a synthetic
orientation histogram obtained from prototypical models of the objects to be manipulated.
Such models may be obtained from computer aided design (CAD) databases. The method thus
requires that the shape of the objects be described, but it is not restricted to par-
ticular types of objects.
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= Abstract

One of the remaining obstacles to the widespread application of industrial
robots is their inability to deal with parts that are not precisely pusitioned. In
the case of manual assemnbly, components are often presented in bins. Current
automated systems, on the other hand, require separate feeders which present the
parts with carefully controlled position and attitude. Here we show how results
in machine vision provide techniques for automatically directing a mechanical
manipulator to pick one object at a time out of a pile. The attitude of the object to
be picked up is determined using a histogram of the orientations of visible surface
patches. Surface orientation, in turn, is determined using photometric stereo applied
to multiple images. These images are taken with the same camera but differing
lighting. The resulting needle map, giving the orientations of surface patches, is
used ta create an orientation histogram which is a discrete approximation to the
extended Gaussian image. This can be matched against a synthetic crientation
histogram obtained from protdypical models of the objects to be manipulated. Such
models may be obtained from computer aided design (CAD) databases. The method
thus requires that the shape of the objects be described, but it is not restricted to
particular types of objects.
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Abstract

One of the remaining obstacles to the widespread application of industral
robots is their inability to deal with parts that are not precisely positioned. In
the case of manual assembly, components are often presented in bins. Current
automated systems, on the other hand, require separate feeders which present
the parts with carefully controlled position and attitude. Some of the methods
developed recently in machine vision allow one to automatically direct a mechanical
: manmpulator to pick one object at a time out of a pile. The attitude of the object to
. be picked up 1s determined using a histogram of the orientations of visible surface
patches. Surface orientation, in turn, is determined using mulitiple images. These
images are taken with the same camera but differing lighting. The resulting needle
diagram, giving the orientations of surface patches. is used to create an orientation
histogram which is characteristic for a particular object. This can be matched
against an orientation histogram computed from a geometric model of the object to
be manipulated. Such models may be obtained from computer aided design (CAD)
databases. The method thus requires that the shape of the objects be known, but it
is not restricted to objects with particular shapes. Similarly, the way in which the
surface of the object reflects light must be known, but the mcthod is not restricted
to materials with particular reflecting properties.

1. Introduction |

We have developed a system that will determine the position and attitude of
a part in a pile of parts, using a few images taken by an electronic camera. The
results can be used to direct a mechanical arm to pick up the part. The system
uses stored models of the objects and can identify which of several different parts is
seen. The method is not restricted to cylindrical parts or even solids of revolution.
Extended light sources can be used in essentially arbitrary positions and the objects
H need not be ones having very special reflective properties. The system adapts to
these variables by means of a calibration step involving an object of known shape.
. Another, different, calibration process is used to determine the transformation
: between the coordinate system tied to the manipulator and that of the camera.
TR The type of sensing system described here will extend the range of application of
today’s industrial robots.
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Mechanical manipulators are being used more and more for spot welding,
machine loading, painting, deburring, seam welding and scaling. They have,
however, not been utilized extensively for manyv other application, like assembly.
One of the reasons is that today’s industrial robot typically just plays back a
fixed scquence of motions taught by an operator. The blind robot cannot deal
with uncertainty in the positions of the parts. Feeding mechanisms and fixtures
are needed to present the parts in precisely the place in which the industrial robot
expects to find them.

2. The Problem

Sor-r means of sensing the position and attitude of the objects is desirable.
This information may be obtained using a system which forms an inage of the
objects. Electronic cameras provide a ready means of feeding a digitized image into
a computer. The image plane, inside the camera, is covered by sensing clements
arranged in a regular pattern . The area corresponding to a sensing clement is called
a picture cell. The quantized measurement of brightness in one of these elemental
areas is called a greyv level. The grey levels taken together form an array of numbers,
which is the discrete approximation of the continuous image. Image brightness, by
the way, is hard to measure accurately, so grey levels are usually quantized to only
61, 128 or perhaps 256 levels.

The problem, of course, is not how to digitize the image, or how to store it,
but what to do with the information once it has been read into the computer. How
can one recognize an object and determine its attitude in space using the array of
grey levels produced by the camera?

Means for solving such problems, in special cases, were developed in research
laboratories 10 to 15 years ago. These methods, to be described next, work well
when the environment is controlled in a suitable way. In particular, there are
situations in which it is possible to distinguish those points in the image which
correspond to the object of interest, from those which do not. Such a segmentation,
into object and “background,” is usually based on differences in brightness. The
result is called a binary image, since at cach point it is either one (object present)
or zero (object absent).

3. Binary Image Processing (*)

A few properties of the binary image, such as the area of the object region
and its perimeter, are calculated readily. There may be more than one connected
region in the binary image and some of these regions may have one or more holes
in them. It makes sense then to calculate the Euler number, the difference between
the number of objects and the number of holes. The Fuler number of the capital
letter “B3,” for example, is minus one, while it is two for the lower case letter “.”
Measures such as area, perimeter and Euler number can be computed rapidly, in
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Figure 1. A binary image can be obtained by thresholdine brightuness values.
ficlure ceiis, arranged on a reguiar raster, are assigtied one ol the two possible
values, 0 or 1, depending on whether the brightness is above or below some threshold
value. The example shown is of rather low resolution. In practice one might work
with perhaps 256 rows and 256 columns. Binary images are casy to digitize, store,
transmit and process, but are limited in their usefulness.

parallel, and can be used to distinguish amongst a small number of different objects
that may appear in the image.

Secondly, the position and rotation of the objects can be readily calculated
using the first and second moments of the regions. The position of the object is
considered to be given by the location of the center of area, while the rotation
of the object in the image plane is defined by the axis of least inertia. If there is
more than one region of ones in the images, the above mentioned calculations can
be applied to each region separately. Naturally, the individual regions have to be
labeled first. Methods for doing this in one pass over the image have been invented
too.

Finally, it is possible to “grow” a binary image region, that is, add to it picture
cells within a specified distance from its margin. Similarly it can be “shrunk” by
growing the background. Such iterative modification techniques have proved useful
in inspection, in recognizing characters and in the automatic digitization of line
drawings.
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The three classes of methods mentioned above are easily implemented in high
speed hardware of relatively modest cost. Various clever techniques are used, such
as run length coding and one dimensional projections of the linage taken in a
number of directions. Several vendors offer devices based on this approach. Binary
image processing systems suffer from limitations however, resulting in part from
the fact that all the information in a binary image is in the silhouette:

1. There must be strong contrast between the object of interest and its background
(Otherwise it is hard to separate the object from the background using a simple
threshold on the grey levels).

2. There should be only one object in the field of view, or, if there are several,
they may not overlap or touch.

3. The object may only rotate in a plane parallel to the image plane (Otherwise
the silhouette of the object changes in a complicated fashion).

As a result of these limitations many applications cannot be handled direetly using
binary image processing methods.

4. The Bin of Parts

In manual assembly, it is common to find components arranged in trays or bins
’ surrounding the work station. All three conditions for the successful application of
binary image pracessing are violated in thic cace An ahviane wnlntian is tn avnid
jumbling the parts together in the first place, keeping them carefully oriented right
from the time they are made. There is a trend to do this now, partly because of
the shortcomings of present-day automation techniques. Parts may be organized on
carriers or attached to pallets, so that they can be mechanically positioned without
the need for sensing.

There are costs associated with this solution. The carriers and pallets must
be designed and manufactured, often to tight tolerances. Pallets also typically are
heavy. take up a lot of space, and may have to be redesigned when the part is
modified. Often the design of the part itselfl must be altered to allow automatic
feceding. In any case, there are still plenty of situations where limited production
volume has not presented the incentive to depart from the more traditional, manual
methods.

A number of attempts have been made to find mechanical solutions to this
problemi. In many cases, for example, it is possible to throw the parts into a
vibratory bowl with carcfully designed selectors, and have them emerge oriented at
a fceder station. Screws and objects with cylindrical geometry are subject to this
approach. Not all parts can be handled this way, however. Large or heavy parts,
as well as parts with complex shapes, do not succumb to this methodology.

Attempts to equip robot arms with electromagnets or vacuum suction cups
have met only with limited success. It is hard to be certain that such a device picks
up exactly one object, and it is still necessary to reorient the object after it s
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picked up. John Birk at the University of Rhode Island, developed a system using
wachine vision methods to pick up ground cylindrical parts. Grinding producces
circumflerential striations in metal, which catch the light in such a way that a
bright highlight appears along the length of the object, when it is illuminated by
a point source. Thresholding of image brightness values allows one to locate these
lines in the image. A robot arm can then be directed to pick up a part with its
gripper aligned perpendicular to the direction of the highlight. A slanted mechanical
chute can be used to complete the re-orientation of the part once it is picked up.
This approach, however, is limited to objects with particular shapes and surface
properties.

5. Machine Vision

There has been considerable progress in machine vision since the timme that
the first binary immage processing systems were demonstrated. The overall task of
a machine vision svstem is the generation of a symbolic description of the three
dimmensional world which gave rise Lo the image. The form of the description will
depend on the application. In our case it can be concise: the identity, position and
attitude in space of the objects. In other cases it may need to be more elaborate.

In some sense. machine vision represents an inversion problem. When an image
of a surface is formed, information about the distance to that surface is lost. The
image is a two dimensional representation of a three dimensional world. There are a
about a dozen depth cues which permit one to recover the missing third dimension
from the image. If asked, most of us would think of stereo first as a method for
recovering the distances to objects. We can see in depth partly because we have
twoe eyes and so obtain images obtained from two slightly different viewpoints.
This is a very effective depth cue, as long as there are contrasting features on
the surface that can be matched. Also, for accuracy, the distance of the objects
should not be too large compared to the separation between the two image forming
systems. We know that this method works well, given the right circumstances, since
almost all topographic maps are made by (manual) interpretation of pairs of aerial
photographs.

At this time, there are a number of systems which automatically match points
in one image to corresponding points in the other. Existing systems are however
complex, expensive, slow and typically able to deal only with certain restricted
types of images. Application to robotics may still be some time away.

6. Shape from Shading (*)

Another important depth cue is shading, the variation in apparent brightness
with surface orientation. When we look at the picture of somebody’s face in a
newspaper, we cannot use sterco as a cue, vet we get a clear impression of the
shape of the features. Enough in any case to help us recognize the person. The
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dimensiounal projection of the three-dimensional world. The task of the machine
vision system 1Is to derive a symbolic description of the scene viewed {rom the
image. The result may be used in the intelligent interaction of the machine with its
cnvironment. If the overall system works, one may conclude that the machine vision
svstem is performing its task. Note that it may be helpful to understand the physics
of image formation when designing the machine vision system, since it performs a
kind of inversion of the transformation performed by the image formation system.
Also, lighting plays an important role. In an industrial setting, for example, lighting
may be controlled to simplify the task of the machine vision system.

region of the picture corresponding to the face is not uniform in brightness, even
though sk has essentially the same optical properties everywhere. Different parts
of the face appear to have different brightness because they are oriented differently
with respect to the light sources and the camera. We use this cue all the time
in interpreting 1mages, particularly those of smoothly curved objects. It has been
possible to analyze this effect and develop automated methods based on the solution
of a non-linear first-order partial differential equation. This so-called shape from
shading method is however too complex and too slow to form the basis of a useful
industrial robot sensing system.

In practical applications of machine vision, we do not necessarily have to emulate
the admirable capabilities of biological vision systems. We can exploit special
properties of the materials or arrange the lighting to simplify the interpretation of

ot
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Figure 3. The oricrnitation of a surface pateh can be represented by 4 point on
a unit sphere. One simply finds the place on the sphere wineh has the same surface
ortentation. A normal to the surface pateh will be parallel to a normal of the sphere
at that point. The point on the sphere can bedentilied using two parameters, like
latitude and loupitude. A sphere used in this fashion is called @ Gaussian sphere,
The mapping of points on the surface of an object onto a unit sphere 15 called the
Gauss mapping.

he tinages. We wiii destiibe one such medhod, aller considering the probiem of the

representation of the shape of a surface.

7. Surface Orientation

Surface orientation has two degrees of freedom. That is, it takes exactly two
numbers to specify 1t fully. This can be scen as follows: Consider a plane surface.
Now imagine a line perpendicular to this surface. To speaify the orientation of the
plane, we need only give the direction of this line, also called a normal to the
surface. Now construct a line parallel to the normal, passing through the center of
a unit sphere. The direction of this line is fully specified if we are told where it
intersects the sphere. So, to each orientation of a planar surface corresponds a point
on the unmit sphere. We see that surface orientation has two degrees of freedom,
since points on the sphere can be identified using two quantities, longitude and
latitude, say.

A unit sphere used as a means of specifying surface orientation is called a
Gaussian sphere. If we are dealing with a curved surface, instead of a planar one,
then surface orientation varies from point to point. We may consider the orientation
al a particular point on the surface to be that of a plane tangent to the surface at
that point.




Horn & Tkeuchs He Pockeg

Figure 4. A surface patch viewed from a direction that is not perpendicular
to the surface appears foreshortened. The apparent arca is its true arca times the
cosine of the angle between the surface normal and the direction towards the viewer.
A surface patch will intercept an amount. of hght proportional to its apparent area
as seen from the light source. In the case of an wdeal Lambertian reflector, all of
this light 1s re-emitted. So the brightness 1s proportional to the cosine of the angle
between the surface normal and the direction towards the light source.

8. Photometric Stereo

)

How can we determine the orientation of a patch of the surface of an ob)
We use a method here which depends only on local information and makes ...,
assumptions about the overall shape of the object. Consider. at first. that we deal
with objects which are F.ambertian reflectors. An ideal Lambertian surface satisfies
two conditions which fully determine is reflective properties:

1. All incident hight 1s retiected, none is absorbed.
2. The surface appears equally bright from all viewing directions.

The amount of light which a surface patch captures depends on its apparent arca
as seen from the light source. A surface viewed from a direction other than along
its surface normal appears foreshortened. The apparent area is the true surface
arca multiplied by the cosine of the angle between the viewing direction and the
surface normal. Thus the amount of light falling on the surface is proportional to
this quantity. We note, from the first condition stated above, that the brightness
of an ideal Lambertian surface must be proportional to the cosine of the angle,
usually called the incident angle. So we obtain the familiar cosine law of reflection
for diffuse surfaces.

From the second condition, we note that the brightness of such a surface does
nct depend on the angle between the surface normal and the direction towards the
viewer, usually called the emittance angle (This is need not be the case for surface
materials which are not ideal Lambertian reflectors).

Imagine a planar patch of the ideal material illuminated by a single distant
point source. Suppose the orientation of the patch is to be determined. The
brightness of the surface will be proportional to the cosine of the angle between
the surface normal and the incident rays. So we get a constraint on the possible
surface orientations if we measure this brightness. But a single measurcement is not
sufficient to determine the orientation uniquely, because many lines make the same
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Figure 5. A single measurement of brightness constraius the surfuce normial to
e at a fixed angle from the direcuion towards the hight source. The loens of all
dircctions Set ol VILg Uhis vonstianii s a Lulc, whuse aais o Lo aias e gt
source. The mtersection of this cone with the surface of the unit sphere 15 & small
circle. The orientation of the surface pateh must correspond to one of the points on
this small cirele. Tt is clear. however, that a single measurement does not provide
cnoush wformation to umquely determine the actual surface orientation. .\ second
measurement, using a different licht source. produces additional constraint. The
surface orientation must correspond to one of the points where the two small circles
intersect.

angle with the direction of the incident rays. The locus of all these lines is a cone,
with axis pointing towards the point source. The normal of the surface must lie on
this cone. We note that in terms of the Gaussian sphere, the possible orientations
lie on a small circle, which is the intersection of the cone and the sphere. The point
at the center of this circle corresponds 1o the oricntation of a surface patch which
lies perpendicular to the incident light rays.

If we now repeat the experiment with a second distant point source, we get a
second constraint on possible surface orientations. The orientation has to lie on a
second, different. small circle. Again, we find that the size of the circle depends on
the observed brightness and the center of this circle corresponds to the direction of
the sccond light source. The actual surface orientation must satisfly both constraints
and thus lies at the intersection of these circles.

This all makes eminent sense if we remember that surface orientation has two

- ——— - e et —— e e
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Figure 6. Three measurements of surface brighiness can be obtained using
tirec ight sources. For each of the three image measurements, a diferent light
sotiree is turned en. Equivalently, three colored iights and a color camera can be
used. In the case of a grey Lambertian surface, cach measurement provides the
product of the albedo and the cosine of the angle between the surface normal and
the direction towards once of the hght sources. The surface orientation and the
albedo can be recovered easily from the three measurements. In practice, of course,
one does not usually encounter surfaces with simple reflecting properties. It is also
better to use extended sources instead of point sources in order to extend the range
of measurement. Under these circumstances a closed form solution is no longer
{easible.

degrees of freedom. We expect it would take two measurements to provide enough

constraint to pin these down. A final difficulty is that the two circles typically

mtersect in two points instead of just one. Thus there is a remaining ambiguity in |
the determination of the surface orientation. We could use a third point source as |
a probe to obtain a third brightness measurement. This solves the problem, but

coustitutes overkill, since all we really need is one b1t of information more.

If we are going to make a third measurement, we may as well use it to determine
another parameter of interest. To illustrate this idea, consider a “grey” L.ambertian
surface. This is a surface which absorbs some of the incident light, re-emitting only
a fraction. which we will call the albedo. In other respects it behaves just like the
ideal Lambertian surface.
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In this case, brightness is the product of the albedo and the cosine of the ineident
angle. Each of the three brightuess measurements provides us with one equation.
We have three unknowuns, the albedo and the two parameters of orientation. The
problem can be recast in the form of three linear equations in three unknowns. It
is well known that such a system of equation. l.as a unique solution, provided that
the equations are linearly independent. The system of equations is dependent if,
and only if, the three light sources and the object lic in a plane. In this case, one
of the three measurements is just a lincar combination of the other two.

Here we have exploited the redundancy provided by a third measurement *~
derive information about surface properties, such as albedo. If we happen to know
that the surface has uniform albedo, we can instead use the extra information as a
check.

Note that the brightness of a surface patch depends on its orientation, nat its
position (Provided that the light sources and the viewer are far away). A smootliiy
curved surface can be thought of as divided into many sinall patches, cach of
which is approximately planar. The three measurements are made for each patch.
~onveniently, these measurements can be made for all surface patches at once
by taking three images. A different light source is powered up for each nrage.
Alternatively, one can use three colored light sources and extract the three images
from the signals produced by a color camera. This 1s faster, but requires a more
expensive camera. Also note that this last approach will not work if the surface
consists of patches of different colors.

What we have just described is a simple example of the photometric stereo
method. Note that we cannot expect to determine the surface orientation with high
precision, since the individual grey levels are noisy. In practice we may be able to
determine the direction of the surface normals to within about 5¢ or 10°. This 1s
not a serious problem, however, since estimation of the attitude of an object 1s
based on information about many surface normals.

9. Generalizations (*)

Note that there is a problem when the surface is inciined so far that it is
not visible from one of the light sources. Basically, one measurement is missing
when a surface is self-shadowed, and so the mecthod only works for the range of
orientations which correspond to surface patches visible form all three sources. This
range can be made large by moving the light sources close together. It should be
obvious though that accuracy is compromised this way. In the extreme case, for
example, when the light sources have all been moved to the same place, all three
measurements are the same. There is thus a trade-off between accuracy and range.

The problem can be amecliorated by using extended sources instead of point
sources. Extended light sources have other desirable features. Many surfaces, for
cxample, in addition to a diffuse component of reflecction, have a glossy reflection
component. When illuminated by a point source, disturbing highlights appear,

10
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which are smeared out virtual 1mages of the source. In the extreme case of a
perfectly specular surface one cannot use a point source at all, sinee 1t creates only
an isolated virtual image. These disturbing highlights can be spread out by means
of an extended source.

Real surfaces generally do not behave like ideal Lambertian reflectors. In
practice then the photometric sterco method has to be able to deal with extended
light sources and arbitrary surface reflectance properties. The above departures
from our idcal model make it unreasonable now to look for a closed form solution
to the three equations for brightness corresponding to the three lighting conditions.

10. Calibration Object

It ix much more convenient to use a numerical solution. based on a lookup
table. The idea is to employ a calibration object of known shape, as for example,
a sphere. Images of the sphere are taken under the same lighting counditions to be
used later in finding the position and attitude of the objects. In the case of the
sphere, the surface normals are particularly easy to calculate: At a particular point
an the sphere, the normal is parallel to the radius. The position and size of the disc
which is the image of the sphere is easily determined from the brightness pattern
in the image. It is then possible to calculate which point on the sphere each picture
cell corresponds to and what the normal is there. The grey levels at this picture cell
in the three imaces are then determined This experiment thne provides ne with a

mapping from surface orientation to brightness triples (or color).

What we need, however, is just the inverse: A mapping from brightness triples
to surface orientation. The experimental data can be numerically “inverted” and a
three dimensional lookup table developed which allows one to efficiently determine
surface orientation. To use the table, the three brightness measurements from a
point in the image of an unknown object are quantized. That is, each one is
allocated to an interval corresponding to an incremeuntal range in the table. The
three numbers obtained are used as indices into the array. The entry located in this
fashion contains the sought after surface orientation. The lookup table need not be
especially large, in practice, 16 by 16 by 16 may be quite adequate, for example.

Nete that the calculation of surface orientation is always very fast, involving
nothing more than looking up the result in a table. This is quite independent
of how complicated the surface reflectance properties are, and how strange the
arrangement of light sources.

l.arge parts of the lookup table are blank, corresponding to “impossible”
combinations of brightness measurements. This follows from the fact that surface
orientation has only two degreces of freedom, and the table has three dimensions.
If we find the brightness triples for all possible orientations, we only explore
a two dimensional surface in the three dimensional space of possible brightness
triples. We could fill the table completely by introducing another parameter,
like albedo as suggested above. Alternatively, we may exploit the redundancy
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Figure 7. Images taken of the cahbration object provide the transformation
from surface orientation to brightness trnples. For cach preture cell, brightness
1s measured n three 1mages taken under three different hichting conditions. The
surface orientation at a patch corresponding to a paiticular preture cell can be
computed from the known shape of the calibration obiect  The lookup table
cmployed by the photometric stereo method 1s budt by inverting the relationship
between orientation and brightness: This three dimensional table 1s addressed using
quantized values of brightness and contains the corresponding surface orientation.

provided by three images in another way. The blank areas of the table can help us
detect shadowing and mutual illumination, since these effects produce “impossible”
brightness combinatinns.

11. Segmenta

One of the hardest p. olems in machine vision is the segmentation of an image
into regions corresponding to different objects. Only when this s done can one
apply the techniques used to recognize an object and to determune s attitude in
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Figure 8. The lookup table can be dissected into layers, and each layer displayed
in the form of a needle diagram. The short. lines indicate surface arientations The
direction of each line corresponds to the direction of stecpest descent on the
surface. The length of the line corresponds to the inclination of the surface. Dots
indicate “impossible” brightness combinations, triples which do not correspond to
any surface orientation. These typically are found only when there is shadowing or
mutual illumination.

space. One can employ several methods to help ensure accurate segmentation of
the image.

First of all, objects cast shadows on one another. The result is that some points
on the shadowed object have brightness readings different from what they would
have been if there was no shadowing. One must detect this condition lest it lead
to incorrect estimates of surface orientation. A crude way of detecting shadows is
to use thresholds on each of the three brightness measurements. Note, by the way,
that objects near the top of the pile, those of most interest to us, will typically not
suffer from shadowing.

Secondly, mutual illumination, or interflection, occurs where objects of high
albedo face each other. Amplification of illumination occurs as light is reflected back
and forth. Again, we find brightness combinations that would not occur if the object
was only illuminated directly by the source. Mutual illumination should be detected
as well, in order to avoid incorrect estimates of surface orientation. Fortunately,
this problem tends to occur near the edges of objects and the boundaries where

13
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IMigure 9. The image must be segmented before properties of an image region
corresponding to a particular object can be computed. Photometrice stereo is used
Lo obtain a needle diagram of the whoele ‘mage. A binary image is developed from
this using several hecuristics. First of all, picture cells at which illegal brightness
combinations where found are marked as belonging to the background. This
removes points which were shadowed or subject to mutual illumination. A number
of heuristics can be employed to mmprove the robustness of this procedure. In the
case of objects with smoothly curved surfaces, for example, one can reject points
where the surface inclination is high and points where there is discontinuity in
surface orientation. The binary image shows the remaining regions, which are now
labeled and analyzed further.

objects obscure one another.
To obtain robust segmentation we mark image points based on four notions:

1. Low grey levels in at least one image suggest shadowing of one object by
another.

2. Combinations of grey levels not found in the look up table are usually due to
the effects of mutual illumination.

3. Discontinuities in surface orientation most often occur where one object obscures
another.

4. High surface inclination occurs near the occluding boundaries where one object
obscures another.

The points so marked form “moats” around the images of the objects, isolating
them from each other. The remaining connccted regions in the image can then be
analyzed further. This segmentation method is robust, but depends to some extend
on the properties of smoothly curved objects. Somewhat different criteria would be
appropriate, for example, for objects with planar faces, like children’s toy blocks.

The segmentation method we use is quite aggressive, in order to be robust. So,
for example, regions of the object where the surface narmal is inclined more than
45° with respect to the direction to the camera are allocated to the background. If
only what remains was used in further processing, the position and attitude of the
object would not be found accurately. For this reason, the region allocated to an
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objects is “grown” again, once segmentation has been accomplished, to encompass
as much useful data as possible.

In some cases an object which is highly inclined with respect to the viewer
may get broken up because of this approach. In our case this not a serious problem,
since objects which are highly inclined are difficult to pick up in any case. It is
better to concentrate on the others.

12. The Needle Diagram

The normals are found at points on the surface corresponding to the picture
cells into which the image is been divided. Consider placing a short surface normal
at each of these points on the object. If we take a picture of the result we obtain
lines in the image corresponding to the projections of the normals. These lines
appear short in areas where the normals point more or less towards the viewer.
They appear longer where the surface is tilted. The direction of these lines gives
us the direction in which the surface is tilted: The lines point in the direction of
steepest descent. The resulting figure is called a needle diagram. It is one way of
representing the information obtained using photometric stereo.

The needle diagram describes the shape of the surface. How can it be used
in recognizing an object and determining its attitude in space? Curiously, we
can discard the information on where a surface normal occurs, retaining only its
direction. Essentially, we build a histogram of surface patch orientations. This is
a quantized version of the so-called extended Gaussian imnage (KGI). which will he
introduced next. In effect, one decouples the problem of determining the attitude
of the object from that of determining its position.

13. The Gaussian Image

First, consider a particular mapping from points on a smoothly curved, convex
object onto a unit spherc. In the so called Gaussian image, a point on the object
is associated with that point on the sphere which has the same surface orientation.
We have already seen this mapping earlier, when we used latitude and longitude
on a sphere to specify the direction of a normal to a surface patch. If the object
hias positive curvature everywhere, like a football for example, then there is only
one point which has a given surface orientation. In this case, the mapping from
the object to the sphere is invertible, that is, we can find a unique point on the
object corresponding to a particular point on the Gaussian sphere. The Gaussian
image can be used to transfer information given on the surface of an object onto
the surface of a sphere.

The earth, for example, is not perfectly spherical, having a shorter “diameter”
measured between the poles than between opposite points on the equator. The
surface of the earth can be mapped onto the surface of a perfect sphere using the
Gaussian image. Cartographers may then project the surface of this ideal sphere
in one of scveral ways onto a plane to provide us with maps that can be printed on
flat sheets of paper.
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Figure 1. The shape of a surface can be represcuted by a needle diagram,
It gives the orientation of surface patches on a regular raster. I'be result can be

lustrated by imagining the surface covered with needies stckins out perpendicularly
[
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longer the fine. the more steeply the surface is inchued. Also. 1t direction of the
line indicaves the direction of sterpest descent. Shown s the needle diagram of a
toroidal object.

14. Gaussian Curvature

So far we have considered the image of a particular point on the surface. I we
consider the images of all points in a pafch, we will get a corresponding patch on the
surface of the Gaussian sphere. The surface normals of the points in the patch will
point in widely differing directions if the surface is highly curved. Correspondingly,
the patch on the sphere will be large. Conversely, if the surface is almost planar,
neighboring normals will point in almost the same direction and the patch on the
sphere will be small.

This suggests an intuitively satisfying definition of curvature. The Gaussian
curvature is defined as the ratio of the areas of the patch on the sphere to that on
the object. The reader can easily verify that the Gaussian curvature of a sphere is
everywhere the same, namely onc over its radius squared. The Gaussian curvature
of a cylinder on the other hand is zero, since any patch on it maps into a portion
of a great circle on the sphere. This is because all points along a line parallel Lo the
axis of the eylinder have the same surface orientation.
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I'tgure 11. A patch on the object maps into a patch on the Gaussian sphere.
The patch on the sphere will be large when the corresponding part of the surface
of the object is strongly curved. Conversely, it will be small it the surface is almost
flat. The ratio of the arca of the patch on the sphere to that of the patch on the
object becomes the Gaussian curvature, as the patches are shrunk.

15. The Extended Gaussian Image

The Gaussian image can be used to map anwv information which is given on
the original surface onto the unit sphere. We now introduce a particular mapping
called the extended Gaussian Image (EGI). It is convenient to think of the EGI
in terins of a mass distribution on the surface of the Gaussian sphere. Imagine
first that the surface of the original object is covered with a material which has
unmt density (mass per unit area). The material from a patch on the object is then
spread onto the corresponding patch on the sphere. The density on the sphere will
be low in areas which correspond to parts of the object which have high curvature.
Conversely, the density will be high in areas which correspond to parts which are
nearly planar.

In fact, the density is just equal to the inverse of the Gaussian curvature. The
IEGI, in the case of a convex object, is the Gaussian image of the inverse of the
Gaussian curvature. The reason we choose to define it this way, is that it allows
us to estimate a discrete approximation of the EGI just by counting how many
surface normals point into cells on the Gaussian sphere, as will be shown.

The shape of a surface can be given by mecans of parametric formulae. The
Gaussian curvature can be computed in terms of the first and second partial
derivatives of these formuiae. We completely side-step the need to estimate these
derivatives by using the tnverse of Gaussiai curvature and the definition of curvature
in terms of arcas of corresponding patches. This is important, because it is unlikely
that derivatives of the somewhat uncertain surface orientation information woutd

be very reliable.
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Figure 12. The extended Gaussian image of a polyhedral object is a distribution
of point masses on the sphere. The position of the points i1s determined by the
orientation of the faces of the polyhedron, while the masses are equal to the
corresponding areas. FFor clarity only points lying on the visible hemisphere of the
(GGaussian sphere are shown.

Polyhedral objects have planar faces of zero Gaussian curvature. What then is
tha T AF cnieh on ahinet? Tlainge At idan o8 cn
pa— — s b N R W LRI \/A»‘Aaao LY RV Yy INAL G u}l
patch onto the corresponding patch ou the Gaussian sphere. we see that the 1GI
of a polyhedral object 1s just a collection of point masses. Corresponding to each
face, there is a mass equal to the area of the face at the point where a line parallel

to the normal of that face intersects the sphere.
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16. The Orientation Histogram

We can estimate the EGI numerically from the experimental data contained in
a needle diagram. First of all, we divide up the surface of the object into patches
corresponding to picture cells. We know the surface orientation of each of these
patches and so can place a mass at the appropriate place on the sphere. The mass
is equal to the surface arca of the patch. We just have to remember that, because of
foreshortening, the areas of these patches on the surface are not all equal. That is,
patches which are inclined a lot with respect to the direction towards the imaging
system are larger than those which are perpendicular to that direction.

To tally up the result, we divide the surface of the Gaussian sphere into cells.
This is called a tesselation of the sphere. One can associate a mass with each
cell of the tessclation, equal to the total arca of the surface patches which have
orientations Talling within the range of orientations belonging to the cell. We call
the resuft an orientation histogram, because it tells us how much of the surface
i1s oriented in various directions. In the limit, as we make the sizes of the cells

18
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Figure 13 The exiended Gaussian image (IZGI) of an object can be estimated
using the known ortentation of suriace patches corresponding to pietnre cells,
A point mass is placed on the Guussiarn sphere corresponding to every surface
patch. The position on the sphere is determined by the onientation, while the mass
equals the actual area of the surface pateh. In order to represent this information
converently i the computer, the sphere 1x divided up into eclls, and the total
mass determined for cach cell. The discrete approxnnation of the EGI s called the
orientation histogram.

smaller and smaller, at the same time also dividing the image more and more finely,
the orientation histogram becomes the extended Gaussian image. It should now be
clear why we chose to define the EGI the way we did.

The orientation histogram can be represented graphically in a number of ways.
One can show a sphere with a normal vector {or each cell of length proportional
to the mass in that cell. This is called a spike model. Another way, if a grey level
display is available, is to show a sphere with brightness in cach cell proportional
to the mass in that cell. The sphere can be projected onto the display surface in
a number of ways, as, for example, orthographically. A slightly better display is
obtained if the sphere is projected stereographically, since the angles between cell
edges are preserved in this projection and it is possible to show more than one
hetisphicre at once.

17. Properties of the Extended Gaussian Iinage

At this point we may take note of some of the properties of the KGI. First of
all. the mass of the whole EGI just cquals the surface arca of the whole object.
Fhis Tollows direetly from the definition of the EGI.
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Figure 14. An orientation histogram can be shown in the form of a tesselated
sphere with perpendicular spikes drawn on each cell of length proportional to the
total mass in that cell. The result is called a spike model.

Next, consider the apparent cross-sectional area of the object when viewed from
a particular direction As noted hefare a <iirface nateh will annpear farechortoned
if viewed from a direction other than one parallel to its normal. The apparent area
1s the actual area times the cosine of the angle between the surface normal and
the direction towards the viewer. The cross-sectional area is just the sum of all
of these foreshortened patch arcas. Now imagine looking at the object from the
opposite direction. The silhouette of the object is mirror reversed, but the apparent
cross-sectional arca should be the same. This must hold for all possible directions.

Suppose now that we cut the Gaussian sphere into two using a plane at right
angles to the given viewing direction. All visible surface patches correspond to
points in one hemisphere. These are the patches with surface normals which make
an angle of less than 90° with the direction towards the viewer. Let us call this the
visible hemisphere. Surface patches corresponding to points in the other hemisphere
arc turned away from the viewer.

The first moment of a mass on the surface of the sphere, relative to the dividing
plane, is just the product of that mass and the perpendicular distance of the mass
from the plane. This distance, in turn, is equal to the cosine of the angle between
the radius and the direction towards the viewer, It follows that the first moment
of the mass distribution in the visible hemisphere is just equal in magnitude to
the cross-sectional area of the object! Since the cross-sectional area is the same
when the object is viewed from the opposite direction, we conclude that the first
moments of two complementary hemispheres are equal in magnitude.

‘They have opposite signs, however, since the masses are on opposite sides of

20
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Figure 15, The cross-sectional area of an object can be obtained by adding up
the apparent areas of all visible surface patehes The apparent area 1 the vroduet
ol the actual area and the cosine of the angie between the sarface worma! sud the
direction towards the viewer. Now. the monment avout o plane throueh the center
of the sphere can be found by sumnnny the prodact of the masses on the suarface
and thewr perpendicular distance from the piane, This distance equals the cosine
af the angle hetween a line nermendicnlar v ane plane and ooradie, o the
Thus the moment of the visible hemisphere 15 equal to the apparent (ross-sectional
area of the object! Since the object has the same apparent area when viewed from
the opposite dircction, the moments of the vppesite hemmispheres must be equal i
magnitude. The moment of the mass distribution on the whowe splhiere then s zero.
il thus s to be true for all choices of viewing direction. the conter o mass of the
extended Gaussian image must be at the origin.

PRERTICION

the dividing plane. The first moment of the uwhoic FOL v the san of the first
moments of the two complementary hemispheres Thise sun o ero I foliows from
the above, that the center of mass of the 61 s on thie dov ooy plane Since this
has to be true for all dividing planes. we conciude that “he oo ¢ riass of the
12Gl 1s at the center of the sphere.

An even more powerful result was derived by Minbowst o o0 1sa7 He first
showed that the areas and onentations of the faces of a ciosed ponvhodron have to
satisfv the condition given above. But then he went on to prove th there s only
one convex polyhedron which has faces with the given areas andg onentations In
our terminology, no two convex polvhedra have the same PG He snowed this
an indirect way, by noting that the convex obiect nmanimizes the nategral of the
product of surface patch arca with distance of the pateh fron: the ongin, subject
to the constraint that the volume ix fined. The object s uniquein determined since
there 1s only one global mimmum Whide Minkowski's proof s not constructive, it
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has been used recently, by James Little of the Umversity of British Colnmibia, in
derving an iterative reconstruction method for the polyhedral case.

The result was extended later to convex, stnoothly curved objects It wis shown
that there s a unique convex object corresponding to an G with center of mass
al the center of the sphere. It may be thought that this result restricts our method
to cor.vex objects, since a given EGhis shared by miany, an infinite number 1 fact,
of non-convex objects. This is not a problem, however, since 1t s very unhkely that
two objects found in a tvpical appheation have the same BEGL There are. however,
other problems with non-convex objeets, which will be addressed later.

—
s

x. Tesselation of the Gaussian Sphere

How do we divide the Gaussian sphere into cells to be used 1 sccumuiating
the orientation histogram” Ideally the cells should satisfy the followime crivenia:

[. They should all have the same area.

2. Theyv should be well “rounded.”

3. They should all have the same shape.

1. Each cell should map onto another cell for sone set of rotations of the sphere.

It is possible to satisfy these criteria if the sphere 1s to be covered with only a few
cells. We can use the tesselations produced by projecting the regular solids outo the
sphiere. L hese give us six cells for the cube and twelve cells for the dodeeshedron,
for example (The tetrahedron, octahedron and icosahedron are less =uitable. siucee
they do not lead to rounded cells). The cells in each case have the sume shape and
area. The projection of the dodeciahedron even leads to well rounded cells. Also,
thie cells map 1mto one another for a finite number of rotations. In the case of the
dodecahedron and the wcosahedron this group of rotations has 60 elcments.

Before we go any [urther, let us see how one might calculate which cell a
particular surface normal belongs to. It turns out that the edges between cells are
portions of great circles of cqual distance from the centers of the cells. The centers
of the cells in turn are the vertices of the dual of the given polyhedron. Thus all
we need is a list of unit vectors pointing in the direction of the vertices of the dual.
We assign the unknown unit vector to the cell for which the dot-product is largest.

Unfortunately, even 20 cells is not good enough. particularly if we keep in
mind that the visible hemisphere is covered by only 10 of these! Tt helps then to
look al sema-regular solids. Semi-regular polyhedra differ {rom regular ones in that
more than one type of regular polygon may be used to construct the surface. The
edges are still all the same length however. Combining pentagons and hexagons,
for example, we obtain the truncated icosahedron. It has 12 pentagonal cells and
20 hexagonal ones. This is the tesselation of the soccer ball. It has the advantage
over the icosahedron that its cells are fairly rounded.
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Figure 16. One way to tesselate the sphere 1s to project a regular polvhedron
placed at the center of the sphere onto its surface. A reguiar dodecahedron leads
to a tessclation into twelve pentagonal cells, while a regular icosahedron leads to
twenty triangular cells. The resulting cells are curvilinear polvgons whose sides are
poriions of great circles of the sphere.

DD

Figure 17. The tesselation used in the construction of the ~occer ball is obtained
by projecting a semircgular polyhedron, the truncated wcosahiedron. onto the sphere.
I* has 32 cells. Another useful tesselation s obtained by projecting the Pentakis
dodecahedron which is made by dividing each pentagon of the dodecahedron into
five equal triangles. It has 60 equal {(but not regular) faces. If eachi of these triangular
faces is further divided into four smaller triangles, onc obtains a frequency two
geodesic dome with 210 cells. This tesselation was used for the figure of the spike
mode] of the orientation histogram.

19. Geodesic Domes

To get still finer tessclations, we may use geodesic domes. To construct such
a dome, one starts with a regular polyhedron and divides its laces into triangles
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(unless, of course, they are already triangular). In this way, for exanple, we get
the Pentakis dodecahiedron, with 60 faces, from the dodecahedron. Assigrios unit
)

vectors to cells s particularly easy in this case We just need to know which cell of

the dodecahedron had the second nearest center to the unknown in order to assign
it to one of the live triangular cells into which a particular cell of the dodecahedron
has been divided. Little extra work is involved since we had to compute the required
dot-products already to determine the cell with the nearest center.

In a still finer geodesic dome, assignment of an unknown to a cell can be done
ciliciently using stepwise refinement. This 1s possible because the cells at successive
levels can be arranged in a hierarchy. Only three new dot-products are needed for
cach level of refinement. If even this is considered too slow, a lookup table can
be constructed indexed by quantized values of two of the components of the umt
VEeCtor.

Triangular cells have corners which are further away from the conter than
those of a more rounded cell of equal area. So tesselations with triangular ceils are
not as desirable as others. Thus we ought to actually use the duals of grodesic
domes which have manyv (irregular) hexagonal cells plus twelve pentagonal cells.
Unfortunately. it appears that it is now more expensive to compute which cell an
nnknown norial belongs to, since there is no longer a nice hierarchical arrangement.

Geodesic domes can be made with very large numbers of cells. How many cells
are enough? It is clear that if we have too few cells, angular resolution will be
low and the orientation histogram a poor approximation to the EGL Conversely,
whon we have oo iy cells, ouly a few normais wiil fali in any given ceii. That
means that the total in a given cell is a very noisy estimate of the average of the
inverse of the Gaussian curvature. We have found that a few hundred celis provide
a reasonable compromise. The answer depends, of course, on several details, such
as hhow many picture cells fall on the region corresponding to the object of interest.
We typically used 256 > 256 images with a couple of thousand picture cells on the
object of interest.

20. Prototypical Object Models

In order to recognize an unknown object and determine its attitude in space,
data derived from its image is compared against that obtained from a stored model.
The approach outlined earlier works well for determining an orientation histogram
of an object given as a prototype. The surface can be divided up into patches and
the orientation of each one determined. The patches do not necessarily all have
the same area. This is easily taken into arcount by weighting their contribution
to the orientation histogram according to their arca. Note that the prototypical
orientation histogram is known over the wholc sphere. unlike the one obtained
from the needle diagram. In that case we only have information for the visible
hemisphere.

A stored prototypical orientation histogram is to be compared with one obtained
from a needle diagram. The picture cells in the image all have the same area. The
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arcas of the corresponding patches on the surface of the object are not all the same,
however, because of foreshortening. We could correct for this, when constructing
the orientation histogram from the needle diagram, by dividing by the cosine of the
angle between the direction towards the viewer and the surface normal. Applying
the correction this way has the unfortunate effect of amplifying errors associated
with measurements of surface patches whose normal is nearly at right angles to
the direction towards the viewer. It is better, therefore, to instead multiply the
prototypical orientation histogram by the cosine factor, when matching the two.

Also, note that we can only calculate the actual area if we know the properties
of the camera and the distance to the object. Photometric stereo does not provide
us with the latter information. We may not be able to tell the absolute size of the
object in this case. The EGI can be normalized by dividing by its integral over
the sphere. The result can be used in matching. Naturally, we lose the ability to
distinguish objects with the same shape but differing sizes if we do this.

A further complication in the case of an orientation histogram derived from
images is that we only get information on the visible hemisphere. Surfaces whose
surface normal is turned more than 90° from the direction towards the viewer
cannot be seen. In fact, because of limitations of the photometric stereo method, we
typically have information about the surface over an even smaller area, perhaps up
to 60° from the direction towards the viewer. Some obvious methods for matching
extended Gaussian images work only if the whole sphere is known.

21. Moment Calculations (*)

It is not difficult, for example, to calculate the inertia matrix of a mass
distribution on the spherc. David Smith at MIT developed a method based on
this matrix of second moments. This matrix is useful in that it contains all the
information needed to compute the incrtia of the mass distribution about an
arbitrary axis through the center of mass. In particular, using straight-forward
calculus methods, one can locate three special axis corresponding to stationary
values of the inertia (maximum, minimum and saddle point). These directions,
called principal axes, are at right angles to each other (unless the mass distribution
happens to be especially symmetrical).

The principal axes are fixed relative to the mass distribution. That is, if
the mass distribution is rotated, so are the principal axes. The rclative rotation
between two extended Gaussian images of the same object can be found simply by
calculating the rotation needed to align their principal axes. This provides us with
an explicit algorithm for directly computing the attitude of an object relative to
its prototype. Nothing more involved than the determination of the cigenvectors of
a 3 X 3 matrix is necded and that, in turn, just requires the solution of a cubic
polynomial.

We cannot use such an elegant method here, unfortunately, since the
cxperimentally obtained orientation histogram is known only over some part of the

25
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Figure 150 The mement of inertic of a mass distribuition shou' un awes pissing
through i center of oy depenvds oo the oristation of the dwes, ibe oment of
inertia is sezxnal tor ene orientation, nnnunal for anothor, wind Las a saddle point
for a third. These three specit onentations Tor the axis are called principal axes
and he at right angles to one another. ‘There direction can be corvenertly shown
as dots on the untt sphere. One mass distribution on the sphere could be lined up
with another, just by lining up the principal axes. This represent a straightforward
technique for determining the attitude of an object if the wholc EGI 1s known.

spherc. Also, the match must take into account the foreshortening effect. We do
not however have to throw out methods based on moment calculations altogether.

We can, for example, make use of the center of mass of the visible hemisphere.
We saw that the center of mass of the complete EGI is always at the origin. It
1s therefore of no use in matching. The center of mass of the visible hemisphere,
howevcer, will be at a position which depends on the attitude of the object. We have
shown that the first moment of the mass distribution on the visible hemisphere is
cqual to the apparent cross-sectional area of the object. Now the mass in the visible
hemisphere is equal to the actual area of the portion of the surface which is visible.
Consider again the plane cutting the sphere into visible and invisible hemispheres.
The perpendicular distance of the center of mass from this plane is just equal to
the ratio of the apparent to the actual surface area. This will typically vary with
the attitude of the object. If we view a football end on, for example, we sce half of
its surface, but the apparent area is relatively small. Conversely, when we view it
from the side, we also see half of its surface, but now the apparent area is relatively
large. The ratio is determined easily from the orientation histogram, or, for that
matter, directly from the necdle diagram.

While the center of mass of the visible hemisphere does not uniquely define the
attitude of the object, it can be used (o save computation. To speed the matching
process one can precompute the expected center of mass given the prototypical
orientation histogram and a sct of viewing direction for which the match is to be
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FFigure 19. In the case of an object which is not cenvex, like a torus. the Gaussian
curvature will be negative for some points on the surface, and more than one point
may have a particular orientation. In this particuiar case, two points on the surface
contribute to a single point on tie Gaussian sphere. Furthermore, some parts of
Lie surface may be opscured even 1f 1he surface normal there makes an angle ol less
than 90° with the viewing direction. The definition of the EEGI has to be modified
1o take these effects into account.

attempted. Any viewing direction for which the center of mass is not at least in
approximately the right position need not be scrutinized further. The discrete set
of directions to the viewer for which this calculation is performed may be chosen
to be the directions to the cells of the Gaussian sphere for convenience. It may also
be advantageous to eliminate potential matches for which the second moments do
not agree, although we did not do so.

22. Objects that are not Convex

There are three problems with objects that are not convex
1. The Gaussian curvalure is negative for some points on the surface.

2. More than onec point on the surafce may map onto the same point on the
(Gaussian sphere.

3. One part of the object may obscure another.
‘

The precise definition of Gaussian curvature takes into account the direction in
which the boundary of corresponding patches on the object and the Gaussian sphere
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are traversed. At a convex (or concave) point, the Gaussian curvature is positive, and
the boundaries are traversed in the same dircetion. If they are traversed in opposite
directions, as happens at a saddle point, the Gaussian curvature is considered 1o
be negative. Analysis of our simple local process for computing the orientation
histogram suggests that we extend our detinition to be the inverse of the absolute
value of the Gaussian curvature, since no account is taken of this.

Also. consideration of the local process for computing the orientation histogram
suggests how one can deal with the fact that more than one point on the surface
will contribute to a given point on the sphere. We simply add up the inverses of the
absolute values of the Gaussian curvature at the corresponding points on the object.
This idea can be further developed to deal with cases where all points along a curve
or even i a region have the same orientation. We obtain impulse functions ot the
Gaussian sphere in these cases. We have already scen this in extended Gaussian
unages of polyhedral objects.

The mapping from the object to the Gaussian sphere is not invertible, unless
the object is convex. The only consequence of concern o us here is that there are
an infinite number of non-convex objects corresponding to a particular EGL. We
do not, however, expect to encounter two different objects with the same EGIin a
typical application.

Obscuration is a more difficult issue. In many cases it will be a small effect except
for certain directions of viewing, where parts of the object appear to be lined up.
One solution is to take obscuration into account by building a view-point dependent
iGl, adding in oniy ihe contributions from suriace patches that are actuatiy visible.
The discrete set of directions to the viewer for which this calculation is performed
may be once again chosen to be the directions to the cells of the Gaussian sphere for
conventence. There is a considerable increase in storage required, but the matching
1s now no longer disturbed by the effects of obscuration.

It is interesting to determine the EGI of some non-convex object. We can do
this for a torus, a good model of the object we used in one of our experiments.
The torus is a solid of revolution obtained by rotating a circle about an axis which
does not pass through the circle. Consider a plane containing the axis of the torus.
It intersects the torus in two circles. It should be clear that points on either one
of these circles correspond to points on a particular great circle on the Gaussian
sphere. This great circle is obtained by cutting the sphere with a plane parallel
to that used to cut the torus. Consider the diameters of these circles which lie
parallel to the axis of the torus. The relationship between one of the circles on the
torus and the circle on the Gaussian sphere is very simple, one is just a dilation of
the other, and points at equal angles to the relevant diameters correspond to each
other. Note, however, that to each point on the Gaussian sphere correspond two
points on the torus, one on each of two circles.

Now add a second plane containing the axis of the torus, but rotated slightly
relative to the first. Two narrow slices of the torus lie between these planes. Repeat
the construction for the Gaussian sphere. Two picces shaped like slices of an orange
are cut out. These so-called lunes of the sphere are delimited by meridians (lines
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Figure 20. A plane passing through the axis of a torus cuts its surface in two
circles. A parallel plane pa<zing through the axis of the Gaussian sphere cutsitin a
great circle. Points o the two circles of the torus map onto this great circle. Thus
two points on the surface of the torus correspond to every point on the Gaussian
sphere.

of longitude). Points on one of the slices of the torus map into points on one of the
lunes of the Gaussian sphere.

Each of the slices of the torus is narrower where it comes closer to the axis
of the torus than where it is further away. The width varies lincarly with distance
form the axis. This makes it difficult to project. one slice onto the Gaussian sphere.
It 1s much casier to consider the two slices together. To obtain the mass density
projected onto the Gaussian sphere we have to add up contributions from both
slices of the torus. Assume now that the slices are very narrow. If one adjoins the
two slices one obtlains a ring of constant width. The mass from this uniform ring is
now projected onto the two lunes on the Gaussian sphere.

Counsider encircling the sphere with evenly spaced parallels (lines of latitude).
These lines cut the lunes into quadrilaterals. The quadrilaterals are widest near
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IPigure 21. If two planes are used, two slices are cut from the torus. Plances
parallel to these cut two lunes from the sphere. The two slices are not of constant
width, but can be abutted to form a ring of constant width, provided that the
slices are very narrow.

Il

Figure 22. The ring constructed form the torus has to be mapped onto the
lunes of the sphere. We can divide the ring into equal strips along its circumference.
Each of these strips corresponds to a cell, namely & piece of one of the lunces lying
between two curves of constant latitude. The mass in each ol these cells is equal
to the arca of one of the strips of the ring. Therefore the mass in each of the cells
is the same. Tese masses are shown here concentrated at the centers of the cells.
Clearly the mass density varies inversely with the cosine of latitude, since the area
of the cells is proportional to the cosine of the latitude.
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the equator and become progressively narrower as one approaches one or the other
of the poles. They correspond to square areas of fized size on the ring we just
constructed. Thus the mass projected into each of the quadrilaterals is the same.
But the area of the quadrilaterals varies as the cosine of latitude. The mass density
on the Gaussian sphere thus varies inversely with the cosine of latitude.

The area of one of the slices of the torus equals the area of the whole torus
times the angle between the two cutting planes divided by 2%. The EGI then ends
up being equal to the area of the torus divided by 27 times the cosine of latitude.
The EGI has singulanties at the poles, where the density increases without bound.
The poles correspond to the two circles on which the torus would rests if it were
dropped on a planar surface. The singularity at a pole arises because all of the
points on the corresponding circle have the same surface orientation.

Note that all torii with the same surface area have the same Gl To find the
area of a torus, cousider it. to be generated by rotating a circle about an axis. The
surface area then is equal to 4 times 7 squared times the product of the radius of
the circle and the distance of the center of the circle {from the axis of revolution.
Thus all torii for which this product is the same, have the same surface area and
thus the same EGI. Some will be large and skinny, while others will be small and
fat.

While there are many non-convex objects which have the same EGI as the
torus. there is only one conver object which has this property. It can be shown that
this object is a solid of revolution obtained by spinning the curve of least energy
about an axis through its endpoints. | he curve of least energy is the curve which
minimizes the integral of the square of the curvature along the curve. 1

23. Attitude in Space

The attitude in space of an object is its rotation relative to some reference. To
determine the attitude of an object, its EGI is matched with the prototypical EGI.
It 1s easier to first explain how this can be dorne in the case of solids of revolution.

\ A solid of revolution is symmetrical about its axis. The attitude of a solid of
revolution is fully specified by the direction of its axis. The direction of the axis
i turn can be specified by the point were a line parallel to the axis intersects the
surface of the Gaussian sphere. Alternatively, it can also be given in terms of the
angle it makes with the image plane (elevation) and the angle between its projection
r i the image and some reference axis (azimuth).

axis. We could therefore simply find the axis of lcast incrtia of the image region
corresponding to the projection of the object. That would pin down one degree of
frecedom with very little work. This would however mean resorting to binary image
processing methods discussed earlier. Their accuracy depends on how well we can
find the silhouette of the object. It is better to work with the surface orientation
imformation,

l The image of a solid of revolution is symmetrical about the projection of its
!
l
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Figure 23. There is only one convex object which has the <ame BEGI as a torus
t1s a sohd of revolution o 'dl{lt‘( v ospinming the least criergy curve abiout an axis
It s lid of revolut bt I by spinming the least o) ve about Xi8
through 1ts endpomnts. The dcast encrgy curve s tne shape adopted by a umform
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dnglvs to the line connecting the two pomnts. Such a curve can be u:(d to obtain
stnooth interpolation between given poimnts and 1ts shape can be given mn terms of
elhptic integrals.

We can sdrnplo the spacce of possible dlroclmn< for the axis, trying to match the
EGI for each one. It 15 desirable to sample the space of possible directions evenly.
The reason is that one ought to search the space efliciently and avoid sampling
one area more finely than another. This leads us to the problem of placing a given
number of points “uniformly” on the surface of a hemisphere. We are looking for
placements which maximize the minimum distance between points.

This is a problem which has received some attention. It is known, for example,
that the best placements for four, six, and twenty points are obtained by projecting
the regular tetrahedron, octahedron and icosahedron onto the sphere (The other
two regular solids, the cube and dodccahedron, do not lead to optimal placements).
It turns out also, that for 32 points, the combination of the dodecahedron and its
dual works well. There is no general rule for the optimum. Fortunately, however,
the centers of the triangles of geodesic domes appear to provide near optimal
placements.

We need not perform a detailed match for cach of the chosen directions for the

axis of the object. Only directions for which the center of mass matches reasonably
well need to be further explored. This means that very few full matches of EGIs
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Figure 24. To evenly sample the space of possible attitudes in which a solid
of revolution can appear, we need 1o place poluts on a sphere. so that they evenly
satuple the surface of the sphere. Ideully, cach point should have the seme distance
to 1ts closest neighbor, This can be deue only if the number of poiuts 1s small.
The optimal placement of 32 points, for example. can be found by combining a
dodecahedron and its dual, the icosahiedron. For a larger number of points, one
scarches for a placement which maximizes the mimimum separation between points
on the sphere. There 1s no general method known for solving this problem, although
geodesic domes combined with their duals are reputed to be good.

actuaily have to be perlorined. Lhe axis direction which gives the best match
15 considered to be the correct direction of the axis of the solid of revolution.
The match is repeated for several dilferent prototypes if one is to distinguish
between several different objects. The unknown is considerced to be the object whose
prototype it matches best.

Another approach, is to Rrst determine the axis of least inertia of the mass
distribution on the visible hemisphere of the EGI. The projection of this axis into
the image plane gives us the axis of symmetry of the image of the object. This pins
down one degree of freedom (azimuth) with very little computation. 1t only remains
for us to find the inclination of the axis of the solid of revolution (elevation). Thus
the search space is reduced from two degrees of freedom to one. Significantly, the
axis of least inertia can actually be computed easily from the needle diagram before
projection of the normais onto the Gaussian sphere, since it is easy to add up the
required products to compute the first and second moments. This approach has the
advantage that the tesselation of the sphere can be lined up with the asxis of Jeast
inertia before projection of the surface normals onto the Gaussian sphere.

24. Matching Orientation Histograms

Two orientation histograms with their cells aligned can be matched in several
ways. One can, for examplie, take the sum of the squares of the differences of the
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totals in corresponding cells as a measure of how different they are. The best mateh
ol i given orientation histogram with a set of prototypical ones is the one for which
this sum 1s smallest. Alternatively, one can compute the sum of the products of the
totals in corresponding cells. In this case the best match i1s the one which produces
the largest correlation. An advantage of the first method is that 4 poor match can
be rejected without completing the computation whenever the accumulated sum of
the squares of the dilferences becomes large. More complicated, but also more ad
hoc, comparison functions are casy to dream up.

There are some problems with this approach. This is best illustrated using
a polyhedron as an example. Suppose that one of the faces has a vormal which
points in a direction which just happens to correspond to the edge between two
cells on the tesselation of the sphere. Then, a tiny change i attitude van move
the full contribution of this particular face from one cell to a neighboring cefl
Thus the EGI is changed rather dramatically and the match will be upset. The
problem is much reduced for smoothly curved surfaces. but cannot be ignored. One
approach to this problem entails storing a vector in each cell. which 1s the sum of
the weighted surface normals.

Another approach, is to perforin the projection several times, for each attitude,
with shightly different alignment of the cells. This would have to he done for both
the prototypical and the experimental data. The total amount of work would be
multiplied, in this case, by the nurmber of shifted tesselations that are to be used.

In practice there are always small errors in the determination of surface
orientation, due 10 noise in the grey level measurements. Noise i estumating surtace
orientation tends to smooth the distribution on the sphere, since 1t displiaces some
surface normals to the cell next to the one they ought to have been assigned to. The
fineness of the tesselation obviously affects how the effects of noise will manifest
themselves. If we make the cells large, few surface normals will be placed into the
wrong cell. Each ccll will have a large total which, statistically speaking, is likely to
be a more accurate estimate of the average of the inverse of the Gaussian curvature.
At the same time, large cells mean poor accuracy in the determination of attitude.
Conversely, if the cells are very small, many will have a zero total, or perhaps
just from one patch. Such noisy distributions are hard to match. The problem is
entirely analogous to that of picking the “right” histogram bin size for estimating
two dimensional probability distributions from a finite number of random samples.

We do not know of an elegant solution to this problem. Inspired by the
smoothing cffect of noise, however, we decided to deliberately smooth the orientation
histogram before matching. This is equivalent to matching a given cell on one
histogram with a weighted average of the corresponding cell and its neighbors on
the other. It is also possible, when building the orientation histogram, to distribute
the contribution of one surface patch to several cells according to how close their
normals are to that of the given surface patch.

How many directions should one try for the axis of the object? On the one

hand, one need not try too many, since surface normals are not known perfectly
in any case. One cannot expect to find the direction of the axis with much more
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accuracy than that with whieh the surface normals can be found. On tiie other
hand, one has to try a large enough number of directions to maure sure that the
cells on the sphere are brought close to their correct position. An axis direction
must be tned which is close enough to the correct one, so that most of the cells
line up with each other. In a typical case, we found that about a4 hundred represent
a suitable compromise. Remember though that EGIs will have to be matched in
detarl only for a few of these axis directions. The rest will be rejected ou the basis
of a gross mismatch in the center of mass of the visible hemisphere.

In practice, we find that the direction of the axis of an object can be determined
with an accuracy of about 57 to 107, This 1s good enough to permit a robot arm
to prck the object np. If better accuracy is required in attitude, a mechamecal
alignment method may be used after the object has been hited free of the others.

25. Reprojection of the Needle Diagram

If we wish to compare the experimental orientation histograt otaied from
the needle diagram, with the svnthetic one obtaimned from the object iuoael. we
can arrange for the cells of the two to hine up. When the experunental orientation
histogram s now rotated however, its cells will generally no longer hine up with
those of the svnthetie onentation histogram. This means that one kas to rotate
the normals i one of them, before projecting them onto a tesselated sphere in
the standard attitude. Reprojection of the normals 1 perliaps most coanveniently
prriormed with the svnthetie data, since 1t can be done once. abead ot timne. and the
results stored. Fortunately, as mentoned before, we can greatly reduce the effori of
“he crosen tesselation has the property that the cells will line up agaimn, at least for
some special rotations, A tesselation with this property simphities matelnng, since
some rotations of the ortentation hustogram merely permutc the totai= an the cells
This i why we were interested in choosing tesselations which have this property.

The faces of the regular solids will line up for the rotations belonging to the
timte subgroup of the continuous group of rotations corresponding to that sohid.
These subgroups have size 12, 24, and 60 for the tetrahedron, octahedron and the
jcosahedron respectively. Tesselations based on the icosahedron and s dual, as for
example, the soccer ball and the Pentakis dodecahedron, have the same rotation
group. In the case of the soccer ball, we can easily list the rotations by considering
three classes of rotation axes.

1. bFriest, we have a five-fold symmetry about any axis passing through the center
of one of the pentagonal cells. This gives us (12/2) > 4 == 24 rotations.
2. Secondly. we have a three-fold symmetry about any axis passing through the
center of one of the hexagonal cells This gives us (20/2) ~ 2 - 20 rotations.
3. Tmally we have a two-fold axis of symmetry about the center of any edge
between hexagonal cells. This gives us another (30/2) = 15 rotations.
I we add the identity to the above, we end up with 60 altogether. Unfortunately.
there are no fimte subgroups »f the group of rotations with a larger number of
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[igure 25, The soccer ball can be used to ustrate the group of rotetions of
the dodecahedron and the wosahedron. There are six Hive-fold axes of syme try
passing through the centers of cach of the pentagonal cells. There are tenthree-iold
axes of symmetry passing through the centers of the hexagonal cells. Finally. there
are fifteen two-fold axes of symmetry passing through the centers of the edges.
Together with the 1dentity rotation oune obtains sixty wayvs of rotating the soccer
ball in such a wayv as to bring pentagonal cells back into alignment with pentagonal
cells and hexagonal cells back into alignment with hexagonal cells. Unfortunately.
there 1s no finite subgroup of the group of rotations in three dimensions with a
larger mumber of elements.
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nore than 60 rotations then, reprojection 1s required.
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axis). To deal with

26. Corrections for Departure from Ideal Conditions (*)

Several of the implicit assumptions in the above analysis are violated in practice.
It is assumed, for example, that the brightness of a surface depends only on its
orientation, not on its position. This 1s the case when the light-sources are infinitely
far away. In practice, light sources are close enough to the surface on which the
objects are placed so that the inverse square law comes into play. This can be taken
account of by a normalization of the brightness values read. One first takes imar«~
of a uniform white surface using each of the three sources in turn. We found that
a linear approximation to the resulting brightness distribution is accurate enough.
All images are then corrected for the nen-uniformity in illumination by means of a
lincar function of the position in the image.

There is another problem which is harder to deal with. Since the light sources
are nearby, the direction of the incident rays is not the same for all points. This
means that the computed surface normals will be off. We found the error due to
this effect to be smaller than that due to non-uniform illumination and harder to
correct for. So we ignored it.

No image sensing device is perfect. Fortunately, charge coupled device (CCD)
camcras have very good geometric accuracy and are lincar in their response to
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brightness. The sensor cells do not. however, all have the same sensitivity 1o Light.
Rome, due to defects in the silicon, are “weaker” than others. One could take this
into ccount by taking a picture of a point source on the optical axis of the camera
when the lens is removed. This would provide uniform illuruination of the nnage
plane. The result could be used for correcting all future brightness measurcments.

Instead. we normalize the three brightness measurements at each picture
cell by dividing by their sum. This eliminates the effect of non-uniform sensor
response and also accounts for fluctuations in illumination. Furthermore, 11 makes
the system insensitive to differences in surface albedo from point to point on
the object. Objects typicaily do not have perfectly uniform surface reflectance
properties. In our experiments, for example. the debugging effort entailed episodes
of rather rough handhng of the parts by the manipuiator. The normalization
method used to deal with non-uniform sensitivity of the image sensor automatically
also provides for fluctuations in surface reflectance. This approach does however
make it harder to detect shadowing and mutual ilumination, which we saw were

helpful in segmentation of the image.

At times. because of severe noise, an imaging device defect, or a surface mark.
an isolated point in the image will not be assigned a surface arientation by the
photometric stereo method. We search for these isolated points and enter a normal
which is equal to the average of the neighboring values. The main reason for doing
this, 1s that such blemishes would count as holes in the computation of the Euler
number.

We also have developed a method which wiil deal with noise using a constraint
based on the assumption that surface orientation varies smoothly almost evervwhere
{So far. we have only assumed that the surface is continuous almost everywhere).
This iterative method, based on the solution of a calculus of variation problem. can
deal with severe noise, but is slow. Fortunately, we did not have to use it.

27. Picking the Object to Pick Up

Once the image has been segmented into regions which appear to be parts of
objects, a decision can be made about which one of these 1s to be analyzed further.
‘The region chosen should correspond to an object near the top of the pile. As little
s possib'~ of this object should be obscured. This is so that the manipulator can
cas.ly pick it up, but also, so that matching with the prototype will work well.
Furthermore, there may be reasons to prefer objects with certain attitudes, either
because they are casier to pick up or because it is known that the system is more
accurate in determining their attitude. No absolute depth information is available
from photometric stereo, so that it is not trivial to pick a suitable object.

Several heuristics can be used to select a “good” object for the manipulator
to pick up. First of all, the region in the image should have a relatively large area
if the object is unobscured. Also, the ratio of perimeter squared to area can be
used to estimate the elongation of the region in the image. A highly clongated
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region may be a cue that the object lies in an attitude that the manipulator will
have difliculty with. Finally. the Euler number may be relevant. In the case of an
unobscured toroidal object, the Euler number will be zero, unless the axis of the
torus is highly inclined relative to the direction towards the viewer.

Another task for the system is to decide how to pick up the object, once its
attitude 1n space i1s known. The system has to be told whicl: points on the surface
of the object are suitable for grasping. Also, the gripper should be placed <o that
it will not interfere with neighboring objects. 1t s helpful. in this regard, to pick
a point which is relatively high on the object. Such a point can be found sitice the
object’s shape and attitude are known. It would also bie reasonable to avoid places
on the object which correspond to places in the image where neighboring regions
come close to the region anaiyzed.

It may not always be possible to guarantee that the object can be picked up as
calculated, particularly if absolute depth information is not available. I this case,
tactile sensors help to detect problems such as collisions with naghborning objrcts
and loss of grip on the part being picked up. It 1s best then to remove the arm from
the field of view and start over. An obvious problem is that the rate at which parts
are picked up 1s not constant if this happens. Some mechanical buffering schene
can be used to solve this problem.

When there are no more objects to pick up the needie diagram will be uniformn.
The image will then not be broken into scparate regions and processing can stop.

28. Moving the Arm

Control of the mechanical manipulator is relatively straightforward compared
to the vision part. We have used photometric stereo and matching of orientation
histograms to determine the attitude of the object we wish to pick up. The position
of the region of interest can be estimated by finding its center of area. This binary
image processing technique is Lo be avoided, however, since the silhouette of this
region may be quite rough. It is better to obtain the position more accurately by
matching the needie diagram with one computed using the object prototype and
the now known attitude of the object.

The position in the image of the region corresponding to the object of interest
defines a ray from the camera. Since photometric stereo does not provide absolute
depth information, we cannot tell how far along this ray the object is. The arm is
therefore commanded to move along the ray, starting at some safe height above the
surface on which the objects lie. A proximity sensor is used to detect when the arm
comes near an object. In our case, a modulated infrared light beam from one finger
of the gripper to the other is interrupted by the object. At this point the hand can
be re-oriented so that its attitude matches that of the object. The gripper i1s then
closed and the object lifted free.

.
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Figure 26. From a single camera pesition we cannot determine the actual three
Limensional coordinates of an object. From where the object appears in the image,
however, we can tell what ray i space must be followed to tind 1t. The computer
contreited arm can then be sent along this ray unul it detects the object by means
of a proximity sensor. To avoid tins rejatively slow search. anothier method, like
binocular stereo, can be used to determine the absolute distance to the object.

29. Calibration of the Hand-Eye Coordinate Transform

In order to command the arm to trace along a particular ray from the camera, it
1s necessary to transform coordinates measured relative to the camera to coordinates
measured relative to the arm. This transformation has six degrees of freedom and
can be represented by a translation and a rotation. It is hard to determine it with
suflicient accuracy using direct measurements of the camera’s position and attitude.
It 1s much more convenient to have the arm move through a series of known
positions in front of the camera. The position of the image of the arm in the camera
is then determined and used to solve for the parameters of the transformation.
To make for high accuracy, more than the minimum number of mcasurements are
used, and a least squares adjustment carried out.

It is very hard to develop a program which can recognize and track the arm.
For this reason we actually have the arin hold a so-called ... yor’s mark which is
casy to locate in the image. It is essentially a 2 X 2 sub-block of a checker-board.
The intersection of the two lines separating dark from light areas can be located
with high precision.

In our experiments, the camera is mounted high above the arm in such a way
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Figure 27. The relationship between the coordinate system of the robot arm
and the camera cye 1s determined by a calibration process. An object which 1s
easy to locate in the image is carried by the arm to a series of positions while the
corresponding image coordinates are measured.

that it effectively looks straight down (Actually, a mirror is used to prolong the
optical path). The image plane is nearly parallel to the plane containing the two
horizontal axes of the arm’s coordinate system. This means that for this plane,
or one parallel to it, one can approximate the perspective projection by an affine
transformation having six parameters. So, in order to simplify matters, we have
the arm move through a number of points in one plane to determine one such affine
transform. This process is then repeated in a plane closer to the camera. Thus each
point in the image can be mapped into one point in each of the two planes. These
two points define a ray in arm space.

30. Objects of Arbitrary Shape

The methods described above made use of the fact that the objects were solids
of revolution. We only had to recover the two degrees of frcedom of the axis of the
object. In the general case, the EGI certainly can still be used, but attitude now
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has three degrees of freedom. One way to see this is to note that an object can be
rotated about an arbitrary axis by an arbitrary augle. It takes two parameters to
specify the axis and one for the angle. What this means is that matching becomes
more tedious. A Jarger number of potential matches have to be tried. Still, the same
filtering opcrations can be employed to eliminate most of them.

A simple extension of what we described above allows us to deal with objects
that are not solids of revolution. We once again use the axis of least inertia of the
mass distribution on the visible hemisphere to pin down one degree of freedom.
The remaining problem is to determine the direction from which the object is
viewed. The possible directions can be specified by points on a sphere. We generate
a discrete sampling of the surface of the sphere which is as near to being umiform
as possible. One can use the same tesselation of the sphere used for the orientation
histogram.

One way to represent rotations of a rigid object is by means of unit quaternions.
These can be thought of as vectors having four components or a “hyper-complex”
numbers with a real part and three imaginary parts. Amongst all of the ways
commonly used to deal with the rotation of arigid body, this one has the advantage
that it allows one to define a metric on the space of rotations. That, in turn, permits
one to consider averages over all rotations, for example. Recently. Phillipe Brou at
MIT, has develped methods for evenly sampling the space of rotations using specially
designed polytopes in four dimensional space. His approach allows one to attempt
matches for large sets of rotations without storing a large number of prototypical
1.G1s. Uesenially, vne ubiatns 60 attitudes [rom each stored EGI. I'recomputing
six EGls allows one to sample the space of rotations (nearly) uniformly with 360
points.

The brute-force matching of orientation histogramus described can become
expensive 1If the attitude is to be determined with high precision. This is because
the space of rotations is three dimensional and so the number of attitudes we have
to try goes up with the cube of the precision. Hill-climbing methods for scarching
the space of rotations may appcar attractive in view of this. One could imagine,
for cxample, first finding a rough estimate of the attitude, by considering the 60
rotations of the icosahedron. The attitude which produces the best match is then
used as an initial value for an iteration which at each step seeks to improve the
match further by making small adjustments. It is unfortunate that such methods
do not seem to work. We found that the match does not become good until one is
really close to the correct attitude.

31. Experimental Results

We chose plastic torii of about 120 mm outer diameter as the test objects.
Their geometry is simple to model and they can be easily picked up using a crude
parallel jaw gripper. We used torii as test objects because they have a shape that
is casy to model, while not being polyhedral or convex. The system looks at a
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Figure 28, Three images of a piie of torus shaped objects. The images are taken
with three different light sources turned on. At first glance the nnages may look
very sumilar. This is because we interpret the shading i terms of object shapes.
Close inspection shows, however, that the grey values at corresponding points of
the three images are typically very different. Photometric sterco is used to obtain
a needle diagram from these images.

pile of these objects using a Hitachi (‘TM) charge coupled device (CCD) camera.
'Three images are digitized with each of three banks o” four 40 watt fluorescent
lights powered on in turn. The grey level images are digitized to about 256 X 256
picture cells and read into a single user computer called a Lisp machine (TM).
Yve used a frequency two geodesic dome based on the Pentakis aodecahedron for
the orientation histogram. It has 240 cells. The attitude of one of the objects is
then determined by matching the experimental orientation histogram against a
prototypical orientation histogram. We make use of the axis of least inertia of the
orientation histogram to reduce the search space. A Unimation Puma (TM) arm is
employed to pick up the object chosen.

We found, by the way, that inexpensive vidicon cameras suffer from significant
geometric distortion. An even more important problem with these devices is that
the digitized grey ievels do not bear a reproducible relationship to image brightness,
even with the automatic gain control (AGC) disabled. This is why we prefer CCD
cameras. It should also be said that industrial robots today typically have very
good repeatability, but poor absolute accuracy. That is, they will go back to a
position taught in terms of joint angles with great precision, but can be several
millimeters off when asked to go to a position specified in Cartesian coordinates.
This is a significant problem when sensors are used to locate parts.

Our system takes about a minute to read in the images, switch lights on and
off, perform the matching and send commands to the manipulator over a serial line.
There is no inherent reason why the cycle time could not be much shorter. We were
interested in demonstrating the feasibility of this approach, not in the maximum
speed possible with our particular arrangement of system modules. Most of the
time the system successfully picks up one of the objects in the pile. Occasionally
it fails, usually becausc the fingers bump into another object before picking up the
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Figure 29. A picture sequence showing the arm picking up a few of the objects
from the pile using the image information to tell 1t where the objects are and how
they lie in space.
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desired one. In this case it just removes the arm from the field of view and starts
over. Better algorithms for picking a good grasping position would help to unprove
the performance even further. These would make use of depth iformation which
15 not available from photometric stereo.

We did just that recently, using a robust, low resolution but high speed,
binocular sterco system developed by Keith Nishihara. In order to use the depth
information we had to solve the spatial reasoning problems involved in deterining
a suitable grasping position on the object; one which would hold the object stably
and not cause the gripper to collide with the other objects,

32. Conclusions

We have demonstrated the feasibility of a machine vision system for picking
objects out of a pile of objects. Our system uses multiple images obtained with one
camera under changing lighting conditions. From these images a needle diagram is
computed, which gives estimates of the orientation of surface patches of the objects.
This 1n turn is used to compute the orientation histogram which is a discrete
approximation of the LEGI. The experimental orientation histogram is matched
against an orientation histograms determined using computer models of the objects.
In this way the attitude of the object in space is obtained. A manipulator can then
be sent along a ray in space to pick up the object.

While our system is not particularly fast, there is no reason whv a faster one
could not be built, since all of the computations are simple, mostly involving table
lookup. Special purpose hardware could also be build to speed up the matching
process. It would not have to be very complicated since it performs a kind of
correlation process.

We believe that what we have described provides a robust approach to the
recognition of objects and the determination of their attitude in space. It will work
better than an approach based on recognizing some special feature of the object
given that only a few thousand picture cells are scanned per object region. In the
case of an approach based on recognition of special features a few thousand points
would be needed for that feature, so that the number of picture points for the
whole object would be much larger.

The needle diagram can be computed from a depth map by taking first
differences. The method we described is therefore also applicable to other input,
such as depth maps obtained using laser range finders. We did not use one in our
experiments since they still appear to be quite expensive and slow. We did, however,
experiment with depth maps obtained using automated stereo.

The above is representative of a new approach to problems in machine vision.
It is based on careful analyses of the physics of image formation and views machine
vision as an inversion problem.
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